Low Power Secure Digital Host Controller

A Project Report

Presented to

The Faculty of the Department of

General Engineering

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Engineering

By

Karjala, Anand
Shah, Neha
Thakkar, Jalpa
Patel, Chintan

May 2010
APPROVED FOR THE DEPARTMENT OF GENERAL ENGINEERING

Dr. Ali Zargar

Department of Aviation & Technology,

San Jose State University

Prof. Morris Jones

Technical Advisor,

Part-Time Assistant Professor, Dept. of Electrical Engineering

Mr. Nonit Kapur

Industrial Sponsor, Applied Micro Circuits Corporation

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date
ABSTRACT

LOW POWER SECURE DIGITAL HOST CONTROLLER

by

Anand Karjala,

Neha Shah,

Jalpa Thakkar,

Chintan Patel

With the increasing consumer digital content, demand for high capacity digital storage is increasing rapidly. Today, portable storage media's are widely used in all mobile phones, digital cameras, camcorders, and in many multimedia devices. Different memory formats like Flash, Secure Digital (SD), Compact Flash, Universal Serial Bus (USB), and Multimedia Card (MMC) are available in the market to store the digital contents. Of all these formats, SD provides many advantages over other formats. SD cards provide high storage capacity, higher transfer speed, and interoperability with Personal Computer (PC) - related devices and multimedia products.

Portable devices are battery operated, so they need to be power efficient. The goal of the project is to design low power SD host controller. The SD host controller consumed total power of 1.162mW. This was achieved by using low power design techniques, right set of synthesis tools, technology library, and constraints.
ACKNOWLEDGEMENT

We would like to express our gratitude to Professor Morris Jones, Department of Electrical Engineering, San Jose State University for his generous guidance and support throughout the project.

We would like to sincerely thank Mr. Nonit Kapur for his encouragement and direction in accomplishing our goal.

We would like extend our sincere gratitude to Professor Ali Zargar, Department of Aviation and Technology for an opportunity to pursue ENGR 281/298 course under his guidance.

Karjala, Anand
Shah, Neha
Thakkar, Jalpa
Patel, Chintan
Table of Content

1.0 Introduction .. 1
1.1 Project Scope ... 2

2.0 Literature Review .. 3
2.1 Introduction ... 3
2.2 Process Scaling ... 4

3.0 Low Power Techniques ... 9
3.1 Clock Gating .. 9
3.2 Gate Level Power Optimization .. 9
3.3 Voltage and Frequency Scaling .. 10
3.4 Multi-VDD .. 10
3.5 Multi-VT (Threshold Voltage) .. 11

4.0 Architecture of SD Host Controller ... 13
4.1 Key Features ... 13
4.2 SD Host Controller Block Diagram .. 13
4.3 SD Controller Interface Signals .. 15

5.0 SD Standard Register Map .. 18
5.1 SD Host Controller Register Map ... 19

6.0 SD Protocol .. 20
6.1 SD BUS Protocol ... 21
6.2 Data Packet Format ... 22
6.3 SD Command Format ... 23

7.0 Low Power Implementation .. 27
7.1 Software Power management .. 27
7.2 Clock Gating and Voltage Scaling .. 29
7.3 Multi Vt Optimization ... 31

8.0 Economic Justification ... 33
8.1 Executive Summary .. 33
8.2 Problem Statement .. 34
8.3 Solution & Value Proposition .. 34
8.4 Market Size .. 35
List of Figures

Figure 1: Power Dissipation Vs Year ... 1
Figure 2: Intel 4004 CPU Interior .. 4
Figure 3: Moore's Law ... 5
Figure 4: Trend of MOS Logic Technologies .. 6
Figure 5: Inverter Dynamic Power ... 7
Figure 6: Leakage Power ... 8
Figure 7: Gate Level Power Optimization .. 9
Figure 8: Multi VDD Power Optimization ... 11
Figure 9: Multi- Threshold Voltage Technique ... 11
Figure 10: SD Host Controller Block Diagram ... 13
Figure 11: SD Standard Register Map .. 18
Figure 12: SD BUS Protocol ... 21
Figure 13: SD Command Frame .. 21
Figure 14: Response Frame .. 22
Figure 15: Data Packet Format for Standard Bus ... 22
Figure 16: Data Structure in 4-bit Mode ... 23
Figure 17: SD Command Format ... 23
Figure 18: SD Common Initialization Routine ... 25
Figure 19: SD Data Transfer Flow ... 26
Figure 20: SoC System with SD Host Controller ... 27
Figure 21: CPM Register .. 28
Figure 22: Simulation showing Clock cut off when there is not data transfer 28
Figure 23: SD Market Size ... 35
Figure 24: Products using SD format to store digital content .. 36
Figure 25: Mobile Phone Market with SD Cards ... 36
Figure 26: Mobile Phone Market .. 37
Figure 28: Worldwide Smartphone Sales ... 37
Figure 29: Mobile Device Vendor Market Share .. 39
Figure 30: Revenue and Total Cost of the Company .. 44
Figure 31: Break Even Analysis .. 47
Figure 32: Profit and Loss Chart .. 47
Figure 33: Return on Investment ... 49
List of Tables

Table 1: AHB Interface Signals .. 15
Table 2: Power Signals ... 15
Table 3: SD Card Interface Signals ... 16
Table 4: RAM Interface Signals .. 17
Table 5: SD Host Controller Register Map .. 19
Table 6: SD Card Interface .. 20
Table 7: Dynamic Power (MW/MHz) ... 30
Table 8: Leakage Power (MW) .. 30
Table 9: Total Power (mW) .. 31
Table 10: Total Power with Multi-Threshold Voltage (mW) .. 31
Table 11: Project Schedule .. 32
Table 12: SWOT Analysis ... 41
Table 13: Units sold by the Companies ... 43
Table 14: Cash Flow Analysis ... 44
Table 15: Calculation of Variable Cost .. 45
Table 16: Calculation of Total Income .. 45
Table 17: Break Even Analysis .. 46
Table 18: Calculation of ROI .. 48
1.0 Introduction

In today’s era of technology and communication, adding new features in a product while maintaining its performance is a great challenge. The storage devices for the next-generation design will play central role in the consumer electronics market including personal devices, communication and entertainment. The power has been the second criteria for the semiconductor industries after other issues such as performance, cost, and area. To design the devices as per customer’s requirements with low cost and low power is becoming the major challenge for the developers. Figure 1 shows how the power dissipation is increasing exponentially after 1998. Before 1998 the power increment was in a straight line. Power budget increment can fail the project. Excessive power density can also reduce the reliability (Kneating M. et el, 2007). Low power product reduces the power dissipation, and hence, the cost of thermal management.

Figure 1: Power Dissipation Vs Year

To store information digitally, different types of formats and memory cards are being developed. Compact Flash, Smart Media were some of the formats that were popular from 2001 to 2004. Today, Secure Digital (SD) cards and memory sticks are taking the sweet spot for storing digital information. SD memory cards are widely used in digital cameras, digital camcorders, mobile phones, personal digital assistants, GPS receivers, and video games. Secure Digital card popularly known as SD card is very small in size (size of postage stamp) and can store high quality error free digital data with high level protection built into each card. Standard SD card capacity ranges from 1 MB to 4 GB. Change in technology allows more storage capacity in secure digital cards, named Secure Digital High Capacity (SDHC), Secure Digital eXtended Capacity (SDXC), and Secure Digital Input Output (SDIO). They have storage capacity from 1 MB TO 2 TB. SD card provides fast speed, low-power operation, easy storage and accesses.

The main focus of the project is to design a low power, high performance standard SD Host Controller for SD cards. Power consumption reduction increases the battery life in addition to better performance for any portable device. There are different types of power reduction techniques used in the industry such as voltage scaling, clock gating, power gating, transistor scaling, adiabatic circuits, technology scaling, transition reduction, parallelism, etc. (Paring T., and Bowers H., 1996). By using proper set of synthesis tools and libraries the power can be extensively reduced without affecting the performance.

1.1 Project Scope

The objective of MS Inc. is to design low power SD Host Controller. The product will conform to SD Host Controller Standard Specification Version 2.0. The goal is to reduce the power by at least 20% compare to the same product available in the market.
2.0 Literature Review

The objective of this project is to design a low power Secure Digital Host Controller IP core. The various market trends in the semiconductor industry were analyzed to validate the need for and the viability of this product. The most common low power design techniques were researched and those that could be applied to this project were identified. The literature review is done through extensive research from journals, books, online encyclopedia and discussion with industrial professionals.

2.1 Introduction

Portable storage devices are becoming popular and growing rapidly. These devices can store and acquire information wherever whenever you need. The important applications of portable storage devices are to make backup copies of important data, to share information between different computers or persons, to store digital pictures, music, games, power point presentations etc., and to secure information. These devices are very cost effective, easy to use, and extremely practical.

Secure Digital (SD) cards are designed for portable storage applications. They have many advantages over their predecessors. They have high storage capacity and built upon NAND flash technology. SD cards have security feature built in for protecting digital contents. These devices are battery operated and have to be power efficient. Historically power was not a constraint but today there is an increasing demand for low power devices. Power supply constraints, board and system level thermal challenges, overall system cost and ecological benefits are some of the reasons to call for low power designs.
There are many techniques available today to reduce power in the digital circuits such as voltage scaling, power gating, clock gating and so on. By reducing supply voltage, we can reduce significant power consumption in the components of the circuit and as in the whole circuit. This document outlines approaches that have been carried out in the history of designing low power circuits and storage devices.

2.2 Process Scaling

In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor to start their own company focusing on building products using integrated circuits. They named their company Intel. In 1969, Intel received contract to design chips for desktop calculator. Intel conceived idea of creating a general purpose processor chip that would read instructions from a memory chip. Eventually this became the first microprocessor. In November, 1971, Intel had publicly introduced the world's first single chip microprocessor, the Intel 4004 with just over 2,300 transistors in an area of only 3 by 4 millimeters (Bellis, 1997).

Figure 2 : Intel 4004 CPU Interior

With increase in demand for high speed processors, power dissipation by processor also increased. Concerns over power consumptions became high priority. Scaling down MOS devices was one of the techniques used to bring down power supply voltage. This reduced gate delay by 30%, reduced power by 50% and allowed clock frequency to increase up to 43% (White & Chen, 2008). According to Moore’s law, number of transistors on integrated circuit doubles every two years. This law is very well illustrated in the Figure which shows the number of transistors for Intel processors from 1970 to 2007.

![Figure 3: Moore's Law](source)

The figure 4 shows how power supply voltage and threshold voltage tend to change with process scaling technology.
As the technology has shrunk, in the deep submicron from 90nm technology, more and more numbers of gates are being placed in small size of chip. This has led to a problem towards the leakage current and power dissipation. Packaging and cooling are becoming more and more complex in deep submicron technology. Reliability also decreases, as the power density goes up because mean time of failure decreases exponentially with temperature.

The leakage of deep submicron process has a major effect on battery operated device. According to ITRS battery life has decreased after 2004 as more and more features have been added. Designers are taking different approaches towards each step of the design process from software to implementation. The different techniques such as clock gating, power gating, multi-VT, multi-voltage, etc. are the approaches taken by the designers to reduce the power.

The total power is the sum of

- Dynamic Power
- Leakage Power
Dynamic Power:

It is the power drawn by the circuit when it is operating due to the system activity and switching.

\[\text{Dynamic power } P = C_L V_{dd}^2 f \]

Where \(C_L \) is the load capacitance, \(V_{dd} \) is the supply voltage, and \(f \) is the clock signal frequency.

Leakage Power:

This is the static power drawn by the circuit when it is powered up but all its clocks are switched off and held at a constant voltage. Leakage power is independent of the transition or any switching activity and hence, it is constant. Leaky transistors and diodes are the main causes of the leakage power.

Figure 6: Leakage Power

\[P_{\text{leak}} = V_{dd} \times I_{\text{leak}} \]

Where \(P_{\text{leak}} \) is the leakage power, \(V_{dd} \) is the supply voltage and \(I_{\text{leak}} \) is the leakage current. Sub-threshold current occurs when the gate is not turned off completely. The Gate leakage current occurs as a result of tunneling current through the oxide gate.
3.0 **Low Power Techniques**

Several low power techniques have been and being used by the designers to reduce the power. The different techniques are

- Clock Gating
- Gate level power optimization
- Voltage and Frequency Scaling
- Multi-VDD
- Multi-VT

3.1 **Clock Gating**

The most common way to reduce power is to turn off the clock when it is not required. Pokhrel and his team from Synopsys Inc., recently compared design with clock gating circuit and without clock gating. Their reports indicate area reduction of 20% and power savings of 34%. Earlier Register Transistor Logic (RTL) designers used to code clock gating circuits explicitly in the RTL. Today Synthesis tool include libraries with clock gating cells (Pokhrel, 2007).

3.2 **Gate Level Power Optimization**

![Figure 7: Gate Level Power Optimization](image)

Optimization of logic by synthesis tool is one the technique to reduce dynamic power. In figure 7, output of the AND gate which is a high activity net is connected to “NOR” gate. With Low power option, the synthesis tool can re-arrange logic such that the high activity net becomes internal to the cell driving a much smaller capacitance thereby reducing dynamic power (Kneating M. et al, 2007).

3.3 Voltage and Frequency Scaling

In CMOS circuit, the dynamic power is largely described by the equation:

\[P_{\text{dyn}} = C \times V_{\text{dd}}^2 \times f \]

Where \(P_{\text{dyn}} \) is dynamic power, \(C \) is the capacitance, \(V_{\text{dd}} \) is the supply voltage and \(f \) is the clock frequency.

Reducing the supply voltage and clock frequency based on work load is one of the techniques for reducing dynamic power. This technique will improve battery lifetime significantly.

3.4 Multi-VDD

As shown in above equation, dynamic power is proportional to \(V_{\text{dd}}^2 \). The power reduces significantly by lowering \(V_{\text{dd}} \) on selected blocks. In figure 8, the RAMS run at the highest voltage as they are on the critical path of timing. But the voltages on other blocks can be reduced without affecting the overall performance (Kneating M. et al, 2007).
3.5 Multi-VT (Threshold Voltage)

Using technology libraries with multiple threshold logic V_T can reduce leakage current. Implementation tools can use these libraries to optimize timing and power simultaneously. There are three versions of the cells: LVT (Low Voltage Threshold), SVT (Standard Voltage Threshold), and High Voltage Threshold). Figure 9 shows the relationship between leakage and delay for 90 nm technology for these versions.
The goal of this technique is to reduce the number of leaky transistors by positioning them only when necessary to meet timing. First the synthesis is done by using primary library and then optimizing the additional library/libraries with different VT (Kneating M. et el, 2007).

Increasing awareness of global warming and green technology is fueling the rise of low power’s importance. Low power has become very essential for circuit design today, driven by the increasing complexity and operating speeds of microprocessors and the demands of portable electronic equipment. The sudden increase in the popularity of cell phones, MP3 players, PDAs and other handheld systems has made extended battery life a major selling point for portable systems (Donlin, 2008).

Secure Digital Host Controller will be designed based on low power techniques. The design will be partitioned to support low power techniques, especially power gating. Implementation of clocks and reset signal will follow, keeping low power in mind. Features to support software to control power management logic will be devised to save overall power consumption.
4.0 Architecture of SD Host Controller

4.1 Key Features

- Supports one SD Slot, Supports 1-bit and 4-bit operational modes
- Compliant with SD Host Controller Standard Specification Version 2.0
- AMBA Bus Host Interface
- Supports Advance DMA mode
- Cyclic Redundancy Check CRC7 for Command and CRC16 for Data
- Built in 1K FIFO for efficient data transfer with Host CPU
- Support Interrupts
- Upto 200 Mbits data transfer rate at 50MHz in 4-bit parallel mode

4.2 SD Host Controller Block Diagram

![SD Host Controller Block Diagram](Figure 10)

Figure 10: SD Host Controller Block Diagram
SD Host Controller is designed keeping low power in mind. It is been architecture to have control over power management based on its application in different SoC designs. The design is partitioned into following sections:

Host Interface:

Host interface connects the AHB Master and Slave to AHB bus. In order to setup a command the host communicates with SD Register through slave interface. The SD controller Master interface is used for DMA Data to/from host memory.

Controller:

The CMD and RESP block initiates CMD to the card and receives response from the card and update SD registers. DMA CTRL block controls the DMA transfer to/from Host memory. The BUS Monitor looks for protocol violation and update SD status registers. FIFO (First-In First-Out) CTRL manages the TX and RX FIFO’s during transmission and reception and act as a flow control during read and write data transfers.

Card Interface:

Card Interface consists of transmitter and receiver block that interacts with the physical interface of the SD card. Command and Data uses CRC checker (CRC7 and CRC16).
4.3 SD Controller Interface Signals

4.3.1 AHB Interface Signals

Table 1: AHB Interface Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clk_ahb</td>
<td>IN</td>
<td>AHB System Clock</td>
</tr>
<tr>
<td>M_mbusreq</td>
<td>OUT</td>
<td>AHB Bus request</td>
</tr>
<tr>
<td>M_hgrant</td>
<td>IN</td>
<td>AHB Bus Grant</td>
</tr>
<tr>
<td>M_haddr[31:0]</td>
<td>OUT</td>
<td>Address bus</td>
</tr>
<tr>
<td>M_hwdata[31:0]</td>
<td>OUT</td>
<td>AHB master write data</td>
</tr>
<tr>
<td>M_hrdata[31:0]</td>
<td>IN</td>
<td>AHB master read data</td>
</tr>
<tr>
<td>M_hwrite</td>
<td>OUT</td>
<td>Write/Read signal</td>
</tr>
<tr>
<td>M_hsize[2:0]</td>
<td>OUT</td>
<td>Size(byte, half word or word)</td>
</tr>
<tr>
<td>M_hburst[2:0]</td>
<td>OUT</td>
<td>Burst Size</td>
</tr>
<tr>
<td>M_hready</td>
<td>IN</td>
<td>Ready signal</td>
</tr>
<tr>
<td>M_htrans[1:0]</td>
<td>OUT</td>
<td>Transfer type</td>
</tr>
<tr>
<td>M_hresp[1:0]</td>
<td>IN</td>
<td>Transfer response</td>
</tr>
<tr>
<td>Intr</td>
<td>OUT</td>
<td>Interrupt to the Host</td>
</tr>
<tr>
<td>T_hsel</td>
<td>IN</td>
<td>Slave Select</td>
</tr>
<tr>
<td>T_haddr[31:0]</td>
<td>IN</td>
<td>Slave address</td>
</tr>
<tr>
<td>T_hwdata[31:0]</td>
<td>IN</td>
<td>Slave write data</td>
</tr>
<tr>
<td>T_hrdata[31:0]</td>
<td>OUT</td>
<td>Slave read data</td>
</tr>
<tr>
<td>T_hwrite</td>
<td>IN</td>
<td>Slave write/read signal</td>
</tr>
<tr>
<td>T_hsize[2:0]</td>
<td>IN</td>
<td>Size</td>
</tr>
<tr>
<td>T_htrans[1:0]</td>
<td>IN</td>
<td>Transfer type</td>
</tr>
<tr>
<td>T_hready</td>
<td>OUT</td>
<td>Slave ready</td>
</tr>
<tr>
<td>T_hresp[1:0]</td>
<td>OUT</td>
<td>Transfer Response</td>
</tr>
</tbody>
</table>

4.3.2 Power Signals

Table 2: Power Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bus_pow_s1</td>
<td>OUT</td>
<td>Control SD Card Power Supply</td>
</tr>
<tr>
<td>bus_volt_s1[2:0]</td>
<td>OUT</td>
<td>SD Bus voltage select</td>
</tr>
<tr>
<td>bus_volt_s1[2:0]</td>
<td>OUT</td>
<td>SD Bus voltage select</td>
</tr>
</tbody>
</table>
4.3.3 SD Card Interface Signals

Table 3: SD Card Interface Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clk_sdcard_out</td>
<td>OUT</td>
<td>SD Clock</td>
</tr>
<tr>
<td>Clk_sdcard_in</td>
<td>IN</td>
<td>Feed Back of clk_sdcard_out</td>
</tr>
<tr>
<td>CMD</td>
<td>INOUT</td>
<td>CMD/RESPONSE</td>
</tr>
<tr>
<td>CMD_IN</td>
<td>IN</td>
<td>SD1/SD4: CMD input</td>
</tr>
<tr>
<td>CMD_OUT</td>
<td>OUT</td>
<td>SD1/SD4:CMD output</td>
</tr>
<tr>
<td>CMD_OUT_EN</td>
<td>OUT</td>
<td>CMD output Enable</td>
</tr>
<tr>
<td>DATA0</td>
<td>INOUT</td>
<td>DATA0</td>
</tr>
<tr>
<td>DATA0_IN</td>
<td>IN</td>
<td>DATA0 Input</td>
</tr>
<tr>
<td>DATA0_OUT</td>
<td>OUT</td>
<td>DATA0 Output</td>
</tr>
<tr>
<td>DATA0_OUT_EN</td>
<td>OUT</td>
<td>DATA0 Output Enable</td>
</tr>
<tr>
<td>DATA1</td>
<td>INOUT</td>
<td>DATA1</td>
</tr>
<tr>
<td>DATA1_IN</td>
<td>IN</td>
<td>DATA1 Input</td>
</tr>
<tr>
<td>DATA1_OUT</td>
<td>OUT</td>
<td>DATA1 Output</td>
</tr>
<tr>
<td>DATA1_OUT_EN</td>
<td>OUT</td>
<td>DATA1 Output Enable</td>
</tr>
<tr>
<td>DATA2</td>
<td>INOUT</td>
<td>DATA2</td>
</tr>
<tr>
<td>DATA2_IN</td>
<td>IN</td>
<td>DATA2 Input</td>
</tr>
<tr>
<td>DATA2_OUT</td>
<td>OUT</td>
<td>DATA2 Output</td>
</tr>
<tr>
<td>DATA2_OUT_EN</td>
<td>OUT</td>
<td>DATA2 Output Enable</td>
</tr>
<tr>
<td>DATA3</td>
<td>INOUT</td>
<td>DATA3</td>
</tr>
<tr>
<td>DATA3_IN</td>
<td>IN</td>
<td>DATA3 Input</td>
</tr>
<tr>
<td>DATA3_OUT</td>
<td>OUT</td>
<td>DATA3 Output</td>
</tr>
<tr>
<td>DATA3_OUT_EN</td>
<td>OUT</td>
<td>DATA3 Output Enable</td>
</tr>
<tr>
<td>SDCD</td>
<td>IN</td>
<td>Card Detect</td>
</tr>
<tr>
<td>SDWP</td>
<td>IN</td>
<td>Card Write Protect</td>
</tr>
<tr>
<td>Clk_ram</td>
<td>OUT</td>
<td>Clock to RAM</td>
</tr>
<tr>
<td>Clk_xin</td>
<td>IN</td>
<td>SD clock input to generate SD clock</td>
</tr>
<tr>
<td>Rstahb_n</td>
<td>IN</td>
<td>External Reset</td>
</tr>
</tbody>
</table>
4.3.4 External RAM Interface Signals:

Table 4: RAM Interface Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA[7:0]</td>
<td>OUT</td>
<td>Address to Port A for FIFO</td>
</tr>
<tr>
<td>DA[7:0]</td>
<td>OUT</td>
<td>Write data to Port A for FIFO</td>
</tr>
<tr>
<td>CENA</td>
<td>OUT</td>
<td>Active low Chip Enable to Port A for FIFO</td>
</tr>
<tr>
<td>WENA</td>
<td>OUT</td>
<td>Active low Write Enable to Port A for FIFO</td>
</tr>
<tr>
<td>BYTEENA[3:0]</td>
<td>OUT</td>
<td>Active low Byte Enable to Port A for FIFO</td>
</tr>
<tr>
<td>AB[7:0]</td>
<td>OUT</td>
<td>Address to Port B for FIFO</td>
</tr>
<tr>
<td>DB[7:0]</td>
<td>OUT</td>
<td>Write data to Port B for FIFO</td>
</tr>
<tr>
<td>CENB</td>
<td>OUT</td>
<td>Active low Chip Enable to Port B for FIFO</td>
</tr>
<tr>
<td>WENB</td>
<td>OUT</td>
<td>Active low Write Enable to Port B for FIFO</td>
</tr>
<tr>
<td>BYTEENB[3:0]</td>
<td>OUT</td>
<td>Active low Byte Enable to Port B for FIFO</td>
</tr>
<tr>
<td>QA[31:0]</td>
<td>IN</td>
<td>DATA OUT for Port A of FIFO</td>
</tr>
<tr>
<td>QB[31:0]</td>
<td>IN</td>
<td>DATA OUT for Port B of FIFO</td>
</tr>
</tbody>
</table>
5.0 SD Standard Register Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0F-00h</td>
<td>SD Command Generation</td>
</tr>
<tr>
<td>1F-10h</td>
<td>Response</td>
</tr>
<tr>
<td>23-20h</td>
<td>Buffer Data Port</td>
</tr>
<tr>
<td>2F-24h</td>
<td>Host Controls</td>
</tr>
<tr>
<td>3D-30h</td>
<td>Interrupt Controls</td>
</tr>
<tr>
<td>4F-40h</td>
<td>Capabilities</td>
</tr>
<tr>
<td>53-50h</td>
<td>Force Event</td>
</tr>
<tr>
<td>5F-54h</td>
<td>ADMA</td>
</tr>
<tr>
<td>FF-F0h</td>
<td>Common Area</td>
</tr>
</tbody>
</table>

Figure 11 : SD Standard Register Map

The standard register map is as shown in the Figure 11. Before initializing the transaction, host driver should set all these registers sequentially. As per SD specification 2.0, registers are classified into 9 categories as shown below:

- SD Command Generation: Register to support Command Generation [0F-00h]
- Response: Register to store Response from the Device [1F-10h]
- Buffer Data Port: Registers to access Internal Data Buffer [23-20h]
- Host controls: Register to Store state of the Controller (status) [2F-24h]
- Interrupt controls: Interrupt control Register (Masks, Enable, Status) [3D-30h]
- Capabilities: Register for vendor specific capabilities of the controller [4F-40h]
- Force Event: Software Interface registers to generate events [53-50h]
- ADMA: Advance DMA Control Register [5F-54h]
- Common Area: Common Information Area (for multiple card support) [FF-F0h]
5.1 SD Host Controller Register Map

<table>
<thead>
<tr>
<th>Offset</th>
<th>15-08 bit</th>
<th>07-00 bit</th>
<th>Offset</th>
<th>15-08 bit</th>
<th>07-00 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>002h</td>
<td>SDMA System Address (High)</td>
<td>000h</td>
<td>SDMA System Address (Low)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006h</td>
<td>Block Count</td>
<td>004h</td>
<td>Block Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00Ah</td>
<td>Argument1</td>
<td>008h</td>
<td>Argument0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00Eh</td>
<td>Command</td>
<td>00Ch</td>
<td>Transfer Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>012h</td>
<td>Response1</td>
<td>010h</td>
<td>Response0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016h</td>
<td>Response3</td>
<td>014h</td>
<td>Response2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01Ah</td>
<td>Response5</td>
<td>018h</td>
<td>Response4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01Eh</td>
<td>Response7</td>
<td>01Ch</td>
<td>Response6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022h</td>
<td>Buffer Data Port1</td>
<td>020h</td>
<td>Buffer Data Port 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>026h</td>
<td>Present State</td>
<td>024h</td>
<td>Present State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02Ah</td>
<td>Wakeup Control</td>
<td>028h</td>
<td>Power Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block Gap Control</td>
<td></td>
<td></td>
<td>Host Control</td>
<td></td>
</tr>
<tr>
<td>02Eh</td>
<td>Software Reset</td>
<td>02Ch</td>
<td>Clock Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timeout Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032h</td>
<td>Error Interrupt Status</td>
<td>030h</td>
<td>Normal Interrupt Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>036h</td>
<td>Error Interrupt Status Enable</td>
<td>034h</td>
<td>Normal Interrupt Status Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03Ah</td>
<td>Error Interrupt Signal Enable</td>
<td>038h</td>
<td>Normal Interrupt Signal Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03Eh</td>
<td></td>
<td>03Ch</td>
<td>Auto CMD12 Error Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>042h</td>
<td>Capabilities</td>
<td>040h</td>
<td>Capabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>046h</td>
<td>Capabilities (Reserved)</td>
<td>044h</td>
<td>Capabilities (Reserved)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04Ah</td>
<td>Maximum Current Capabilities</td>
<td>048h</td>
<td>Maximum Current Capabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Current Capabilities (Reserved)</td>
<td>04Ch</td>
<td>Maximum Current Capabilities (Reserved)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>052h</td>
<td>Force Event for Error Interrupt Status</td>
<td>050h</td>
<td>Force Event for Auto CMD12 Error Status</td>
<td>ADMA Error Status</td>
<td></td>
</tr>
<tr>
<td>053h</td>
<td></td>
<td>054h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05Ah</td>
<td>ADMA System Address [31:16]</td>
<td>058h</td>
<td>ADMA System Address [15:00]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05Eh</td>
<td>ADMA System Address r63:48</td>
<td>05Ch</td>
<td>ADMA System Address [47:32]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0F2h</td>
<td></td>
<td>0F0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEh</td>
<td>Host Controller Version</td>
<td>0FCh</td>
<td>Slot Interrupt Status</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 SD Protocol

Secure Digital is a synchronous serial command-response type of protocol that can do bulk data transfers using either 1-bit or 4-bit parallel data lines. In both modes, one clock line is used for synchronization and one command line for sending SD command frames. In 4-bit mode the bulk transfer throughput is four times than that of 1-bit mode. Cyclic redundancy check is used to detect errors during data transfers.

Table 6: SD Card Interface

<table>
<thead>
<tr>
<th>Name</th>
<th>SD Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DAT3</td>
<td>Card Detect/Data Line[Bit 3]</td>
</tr>
<tr>
<td>CMD</td>
<td>Command/Response</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock Line</td>
</tr>
<tr>
<td>DAT0</td>
<td>Data Line [Bit 0]</td>
</tr>
<tr>
<td>DAT1</td>
<td>Data Line [Bit 1]</td>
</tr>
<tr>
<td>DAT2</td>
<td>Data Line [Bit 2]</td>
</tr>
</tbody>
</table>

SD communication Channel consists of CMD, CLK and DAT [1/4] lines to communicate with the SD Device.
6.1 SD BUS Protocol

SD bus protocol is based on command-data-response bit streams that are initiated by a start bit and terminated by stop bit.

Figure 12: SD BUS Protocol

Command: A command Frame is a token that starts an operation which is initiated by the host, which is transmitted serially on the CMD line.

Figure 13: SD Command Frame

Response: A response is a token that is sent from a device to the host as an answer to a previously received command frame. Response is also transmitted serially over the CMD line.

![Response Frame](image)

Figure 14 : Response Frame

Data: Data is transmitted serially on single DAT0 Line or parallel on DAT [0-3] lines between host and the device.

6.2 Data Packet Format

![Data Packet Format](image)

Figure 15: Data Packet Format for Standard Bus

6.3 SD Command Format

SD commands have a fixed code length of 48 bits as shown in figure 17. Start bit is transmitted first followed by the direction of transmission i.e for host this bit is set to ‘1’. The next six bits that follow transmission are command index, which is a binary coded number that can take values from 0 to 63. Some commands need arguments which are coded in to the argument bits. All SD commands are protected by CRC to detect errors during transmission. List of SD commands are provided in the Appendix C.

<table>
<thead>
<tr>
<th>Bit position</th>
<th>47</th>
<th>46</th>
<th>[45:40]</th>
<th>[39:8]</th>
<th>[7:1]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (bits)</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>32</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Value</td>
<td>‘0’</td>
<td>‘1’</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>‘1’</td>
</tr>
<tr>
<td>Description</td>
<td>start bit</td>
<td>transmission bit</td>
<td>command index</td>
<td>argument</td>
<td>CRC7</td>
<td>end bit</td>
</tr>
</tbody>
</table>

SD commands are classified into,

- Broadcast Command: Intended for all SD cards, some require Device Response.
- Address Commands: Intended for specific addressed Device to request for a Response.
- Card Identification Commands: Card Identification Commands.
- Data Transfer Commands.

Section 6.3.1 explains how and when above commands are used. Appendix C has all the details about the commands.
6.3.1 SD Card Initialization and Data Transfer

In figure 18 shows common card initialization routine and figure 19 shows SD data transfer flow.

Figure 18: SD Common Initialization Routine

Figure 19: SD Data Transfer Flow

7.0 Low Power Implementation

The major market for MS Inc., SD controller will be mobile and portable multimedia System on Chips (SoC) that runs on a battery power. To serve the above market, it is essential that the SD Controller consumes low power both under typical and absolute maximum operating conditions. Figure 20 shows a typical SoC design with an embedded microprocessor (CPU) and SD host controller.

![SoC System with SD Host Controller](image)

Figure 20: SoC System with SD Host Controller

7.1 Software Power management

To ensure that MS Inc.’s SD Controller IP can be used effectively in multiple applications requiring low power, the design is partitioned to support various low power techniques. A software programmable register called clock and power management (CPM) register is provided.
to select the required power saving mode. The register is mapped to an address FAh of SD common register space.

CPM Register bits:

<table>
<thead>
<tr>
<th>Rsvd</th>
<th>Rsvd</th>
<th>Rsvd</th>
<th>Fs1</th>
<th>Fs0</th>
<th>PM_en</th>
<th>Vs1</th>
<th>Vs0</th>
</tr>
</thead>
</table>

Figure 21: CPM Register

PM_en when set by the software, DMA logic and other DATA path logic will have their clock turned off during non data transfer modes. When Software programs SD Register for Data transfer these blocks become active.

Vs [1:0] can be encoded into different voltage settings. The external power regulator circuit can use these values to scale the voltage.

Fs [1:0] can be encoded into different frequency settings. These settings can be used to scale the frequency.

At the SoC level above mentioned techniques can be used to save static and dynamic power based on the Application.

Figure 22: Simulation showing Clock cut off when there is not data transfer
7.2 Clock Gating and Voltage Scaling

In most of the digital designs the activity is synchronous to clock signal. Clock signal toggles every clock cycle switching the CMOS circuit ON and OFF resulting in significant amount of dynamic power dissipation. Therefore by gating or shutting off the clock when not needed will save significant amount of dynamic power. Using low power synthesis tool, clock gating logic can be inserted into the design as shown in Figure 21.

![Clock Gating Diagram](image)

Figure 21. Clock Gating

In order for the synthesis tool to insert clock gating circuit, tool specific RTL coding guidelines must be followed. In this project Cadence RTL compiler synthesis tool is used to insert clock gating circuit. With clock gating implementation, the design area reduced by 10% and the total power reduced by 44%.
Table 7: Dynamic Power (MW/MHz)

<table>
<thead>
<tr>
<th>Core</th>
<th>Vdd 0.81V</th>
<th>Vdd 0.88V</th>
<th>Vdd 0.99V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O Clock gating</td>
<td>2.134</td>
<td>2.349</td>
<td>3.053</td>
</tr>
<tr>
<td>W/Clock gating</td>
<td>1.162</td>
<td>1.208</td>
<td>1.516</td>
</tr>
</tbody>
</table>

Table 8: Leakage Power (MW)

<table>
<thead>
<tr>
<th>Core</th>
<th>Vdd 0.81V</th>
<th>Vdd 0.88V</th>
<th>Vdd 0.99V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O Clock gating</td>
<td>0.086</td>
<td>0.269</td>
<td>0.474</td>
</tr>
<tr>
<td>W/Clock gating</td>
<td>0.076</td>
<td>0.246</td>
<td>0.438</td>
</tr>
</tbody>
</table>
Table 9: Total Power (mW)

<table>
<thead>
<tr>
<th>Core</th>
<th>Vdd 0.81V</th>
<th>Vdd 0.88V</th>
<th>Vdd 0.99V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O Clock gating</td>
<td>2.22</td>
<td>2.618</td>
<td>3.526</td>
</tr>
<tr>
<td>W/Clock gating</td>
<td>1.162</td>
<td>1.455</td>
<td>1.954</td>
</tr>
</tbody>
</table>

7.3 Multi Vt Optimization

During synthesis, following multi Vt libraries are provided to the tool to manage timing and power.

- sc9mc_cln40g_base_hvt_c50_ss_081_m40_nldm.lib
- sc9mc_cln40g_base_rvt_c50_ss_081_m40_nldm.lib

Table 10: Total Power with Multi-Threshold Voltage (mW)

<table>
<thead>
<tr>
<th>Core</th>
<th>Vdd 0.81V</th>
<th>Vdd 0.88V</th>
<th>Vdd 0.99V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O Clock gating</td>
<td>2.22</td>
<td>2.618</td>
<td>3.526</td>
</tr>
<tr>
<td>W/Clock gating</td>
<td>1.162</td>
<td>1.455</td>
<td>1.954</td>
</tr>
</tbody>
</table>

There was not much of a improvement on power as the design was meeting timing.
Project Schedule – Semester II

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start Date</th>
<th>End Date</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design Specification Review</td>
<td>15 days</td>
<td>1/25/2010</td>
<td>2/12/2010</td>
<td>Chintan</td>
</tr>
<tr>
<td>2</td>
<td>Design of Controller IP Core</td>
<td>21 days</td>
<td>1/29/2010</td>
<td>2/26/2010</td>
<td>Anand and Neha</td>
</tr>
<tr>
<td>3</td>
<td>Testbench Development</td>
<td>11 days</td>
<td>2/24/2010</td>
<td>3/10/2010</td>
<td>Jalpa</td>
</tr>
<tr>
<td>4</td>
<td>Verification of Design</td>
<td>20 days</td>
<td>3/10/2010</td>
<td>4/6/2010</td>
<td>Anand and Jalpa</td>
</tr>
<tr>
<td>5</td>
<td>Design Implementation</td>
<td>8 days</td>
<td>4/6/2010</td>
<td>4/15/2010</td>
<td>Chintan and Neha</td>
</tr>
<tr>
<td>8</td>
<td>Final Report Presentation</td>
<td>4 days</td>
<td>5/10/2010</td>
<td>5/13/2010</td>
<td>All</td>
</tr>
<tr>
<td>9</td>
<td>Project Submission</td>
<td>2 days</td>
<td>5/13/2010</td>
<td>5/14/2010</td>
<td>All</td>
</tr>
</tbody>
</table>

Figure 23: Project Schedule

Table 11: Project Schedule
8.0 Economic Justification

An Economic Justification gives an overall idea about the success of the business plan and strategies which should be taken into account to launch the product into the market once it is developed. The justification also helps to study the market of SD card. MS Inc. will provide the memory card controller with security features, which will consume less power to capture the market shares in no time. It is estimated that by the end of year 2012, 40.7 millions of units of chips will be sold by four customers and the expected profit will be $145,400. It also covers the predicted sale in the future, profit margin and break-even point for the company.

8.1 Executive Summary

SD memory card is the most popular digital storage media used across dozens of products available in the market today. To communicate with these cards, SD host controller is required. Most of the SD memory cards are used in portable, battery operated devices. With the advent of nano technologies, the density and the operating speed of the integrated circuits inside these portable devices have increased tremendously. With more and more functionalities integrated into the same chip, the power consumption has become the limiting factor in fulfilling the market demand.

The low power SD host controller developed in this project will consume 20% less power compared to its competitors without sacrificing the performance. The low power features offered by this SD host controller in any multimedia SoC (System on Chip) chips will guarantee to maximize the battery life.

The company’s main targeted customers are Mobile Smart Phones, Digital Camera and Multimedia SoC and Navigation/PC manufactures. These companies will pay initial license fee
of U.S. $100,000 per project and little royalty of two cents for every chip sold. The funds for the initial investment will be from bank loan. We will hit break-even point by beginning of the year 2011 when four licenses will be sold. The company will make profit from license fee and the royalty there after.

MS Inc. will market the low power SD controller through SD Association (SDA) marketing events and news releases. The company will also approach potential customers through market research and demonstrate low power capabilities of their SD host controller. MS Inc. will extend their full support to their customers in integrating the low power SD controller into their design and meeting their power requirements.

8.2 Problem Statement

Battery powered portable devices like mobile phones and multimedia products are combining many features on a single chip. SD host controller is one of the designs on these chips. As the features on the devices are increasing, the demand for more power requirement is also increasing. In the absence of low power design techniques, portable devices will suffer from low battery life or need heavy battery pack. The design IP’s inside SoC’s need to be power efficient. The world needs low power SD controller without sacrificing performance.

8.3 Solution & Value Proposition

MS Inc.’s objective is to design SD controller using low power design technique that consumes 20% less power than the controllers available in the market, and at the same time not sacrificing the performance. In this IP, power management circuit will intelligently switch off power to the blocks that are not needed to be active during particular mode of operation. By
using clock gating and multi threshold voltage techniques appropriately, the SD host controller design will consume less power.

8.4 Market Size

Reports collected from internet, IDC and Gartner indicate that, out of all the memory storage formats used for portable devices, SD format has 56.6% market share (PRNewswire, 2003).

Figure 25: Products using SD format to store digital content

Report from leading Analyst’s indicates that 85.6% of these smart phones will be built upon SD technology.

Figure 26: Mobile Phone Market with SD Cards

Market Analysis show that mobile phone market generated $4 billion in revenues in 2006 and the market is expected to generate over $30 billion in revenues by 2012 (Pandey, 2007).

![Mobile phone market](image)

Figure 27: Mobile Phone Market

<table>
<thead>
<tr>
<th>Company</th>
<th>2Q09 2Q09 Market</th>
<th>2Q08 2Q08 Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>Shares (%)</td>
<td>Sales</td>
</tr>
<tr>
<td>Nokia</td>
<td>18,441.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Research In Motion</td>
<td>7,678.9</td>
<td>18.7</td>
</tr>
<tr>
<td>Apple</td>
<td>5,434.7</td>
<td>13.3</td>
</tr>
<tr>
<td>HTC</td>
<td>2,471.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>1,249.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Others</td>
<td>5,688.2</td>
<td>13.9</td>
</tr>
<tr>
<td>Total</td>
<td>40,962.8</td>
<td>100.032,272.7</td>
</tr>
</tbody>
</table>

Note: For HTC, Gartner counts only the company's own-branded devices, including the G1.
Note: Totals may not add to 100.0 percent due to rounding.
Source: Gartner (August 2009)

Figure 28: Worldwide Smartphone Sales

8.5 Competitors

Arasan Chip systems, Ricoh, Eureka, Synopsys Inc., are top most players in providing customers with SD host controller IP. Arasan Chip systems has major market share compared to others.

MS Inc. will use low power design techniques and process technology to consume 20% less power compared to our competitors. This will be proven to customers on a FPGA platform. The company with its experienced staff is confident about providing world class support to their customers. It will also provide assistance to the customers in integrating low power SD host controller IP in to their SOC designs.

8.6 Customers

Any Electronics Industry in need for a low power and high performance SD Host Controller IP is a customer of MS Inc. The company main targeted customers are Mobile Smart phones, Digital Camera manufactures, multimedia SOC IC developers, and Navigation/PC manufactures.

MS Inc. will target the mid size and small size companies and later will target the large scale companies like Nokia, Samsung, and Motorola etc. The Figure 29 shows the worldwide market share of the listed companies for the third quarter of year 2008.
8.7 Cost

SD Host controller IP cost will be based upon following flexible licensing:

- **Annual Licensing Fee**: Customer will pay upfront license fee for whole year. By paying Annual renewal fee, customer will get maintenance and new IP’s at a discounted price. In this contract, customer automatically will get upgrades to the IP when any new feature is added. Customer will not need to pay royalty for the 1st year. After that, customer needs to pay royalty of two cents on every chip he sells with the IP.

- **Per Project Licensing Fee**: Customer will pay upfront licensing fee per project basis. Customer will need to pay royalty of two cents on every chip he sells with the IP.
8.8 **Price Point**

MS Inc. being a start-up, it is very important to attract customers by providing competitive pricing. It is estimated that for a design of this kind requires at least four employees working 40 hrs/week for 16 weeks. For a customer it costs $128,000 and 16 weeks lag to the market.

4 Engineers x $50/hr x 40 hrs/wk x 16wk = $128,000

MS Inc. will license its low power IP design for a price of $100K to the customer. The customers will benefit from its low power architecture and will save sixteen weeks to time to market.

8.9 **Personnel**

8.9.1 **R&D Staff**

For this project, the company has four experienced Engineers with following background:

- Mater’s in Electrical Engineering
- Excellent Knowledge in Digital Design
- Good knowledge in writing Verilog code for ASIC
- Excellent understanding of Low power digital design methodology
- Good knowledge in using Synthesis tools and RTL compiler
- Good knowledge in SD protocol
Table 12: SWOT Analysis

<table>
<thead>
<tr>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power design expertise</td>
<td>Start-up company</td>
</tr>
<tr>
<td>Demand for Low power SD controller</td>
<td>Limited budget (cannot afford High end power tools)</td>
</tr>
<tr>
<td>Flexible Licensing features</td>
<td>Limited resources</td>
</tr>
<tr>
<td>Commitment to provide Quality or Service</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery operated Smart Phones & portable Multimedia SoC designs need low power IP’s</td>
<td>Competition</td>
</tr>
<tr>
<td>The report from market analysts is that 85% of Smart Phones and Multimedia devices will use SD cards due to their security features, performance and high memory capacity</td>
<td>Change in memory storage technology</td>
</tr>
</tbody>
</table>

8.11 Business & Revenue Model

MS Inc. business model is based upon IP licensing and consultation fees. Customers will be charged upfront with annual or per project basis licensing fee. MS Inc. will also provide consultation for low power designs. Based on type of licensing fee, customers will also have to pay small royalty on the chips they sell. Company’s revenue will be mix of licensing fee, consultation charges and the royalty from customers chip.

Marketing report show that SD memory and IO cards will dominate storage market in coming five years, the company expects huge profit from licensing fee and royalties. As awareness towards low power design is also increasing among the chip industries, the company also expects revenues from its consultation too.
8.12 Exit strategy

Planning Exit strategy is as important as staring a business. Following are the options that MS Inc. has in mind.

- **Sell Business**

 MS Inc.’s one of the exit strategies is to sell business to other company. The parent company may not be in the same line of business. In return MS Inc. will receive cash. The Buyer will get IP technology. The Buyer will market IP and get all the revenue from license fee and royalty.

- **Merger**

 MS Inc. will merge with big company and expand its business by using parent company’s sales and marketing force. MS Inc. may not get cash but will get stocks options of the parent company. This will bring huge benefit to the MS Inc. and its employees.

- **Acquisition**

 MS Inc. will also look into being acquired by other company. MS Inc. will approach third party who deal with such acquisition. By acquisition, the buyer will become owner of the business. MS Inc. will get cash and stocks in return.

- **Liquidation of Assets**

 In worst case, MS Inc. will shutdown the business by laying off work force and sell out its assets.
8.13 Cash Flow Analysis

The company forecasted the license sale based on market survey. According to Gartner Reports, 40 million units of mobile phones were sold at the end of second quarter of the year 2009. Based on this report, MS Inc. will get revenue from the royalty charged per unit sold and the revenue by selling license fee. Table 14 and 15 shows the cash flow for MS Inc.

Following formulas are used to calculate the total revenue generated by the company (Daniel, L; Babcock, L C; & Morse, 2002).

Total Cost = Fixed cost + Variable Cost

Revenue from royalty = No. of unity sold * Unit royalty price

License Revenue = No. of licenses sold * Unit price of licenses

Profit/Loss = Revenue – Cost

Table 13 shows the approximate number of units sold in millions from year 2010 to 2014.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Mobile Market Share %</th>
<th>No. of Chips Sold in 2010 (in Millions)</th>
<th>No. of Chips Sold in 2011 (in Millions)</th>
<th>No. of Chips Sold in 2012 (in Millions)</th>
<th>No. of Chips Sold in 2013(in Millions)</th>
<th>No. of Chips Sold in 2014(in Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nokia</td>
<td>41.2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Samsung</td>
<td>19.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80</td>
<td>6</td>
</tr>
<tr>
<td>Apple</td>
<td>10.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80</td>
<td>5</td>
</tr>
<tr>
<td>Motorola</td>
<td>6.2</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>Sony Ericsson</td>
<td>5.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>3.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>13.5</td>
<td>0</td>
<td>0.52</td>
<td>0.7</td>
<td>1.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Table 14 shows approximate calculations of cash flow for MS Inc.

Table 14: Cash Flow Analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Customers</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>License fees charged</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Revenue from Royalty</td>
<td>$0</td>
<td>$0</td>
<td>$210,400</td>
<td>$814,000</td>
<td>$1,052,000</td>
</tr>
<tr>
<td>Fixed cost</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Variable cost</td>
<td>$355,000</td>
<td>$355,000</td>
<td>$365,000</td>
<td>$490,000</td>
<td>$525,000</td>
</tr>
<tr>
<td>Total cost</td>
<td>$455,000</td>
<td>$455,000</td>
<td>$465,000</td>
<td>$590,000</td>
<td>$625,000</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$0</td>
<td>$300,000</td>
<td>$610,400</td>
<td>$1,314,000</td>
<td>$1,577,000</td>
</tr>
</tbody>
</table>

Figure 30 shows the total cost and revenue generated by the company from 2011 to 2014.

Figure 30: Revenue and Total Cost of the Company
8.13.1 Calculation of Fixed Cost

Basic operating cost of the company which includes EDA tools including licensing fee:

$100K

8.13.2 Calculation of Variable Cost

Non Recurring cost will be as shown in Table 15.

<table>
<thead>
<tr>
<th>Table 15: Calculation of Variable Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Employee Salary</td>
</tr>
<tr>
<td>Investment in Marketing (Advertising, Conferences, Business travel)</td>
</tr>
<tr>
<td>Legal and Accounting Fees</td>
</tr>
<tr>
<td>System Maintenance (IT)</td>
</tr>
<tr>
<td>Business expenses (Office Space, Bills)</td>
</tr>
</tbody>
</table>

8.13.3 Calculation of Total Income

<table>
<thead>
<tr>
<th>Table 16: Calculation of Total Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>No of Customers</td>
</tr>
<tr>
<td>License fees charged</td>
</tr>
<tr>
<td>Royalty charged</td>
</tr>
<tr>
<td>Total Revenue</td>
</tr>
</tbody>
</table>
9.0 Break-Even Analysis

Break-even analysis is an economic evaluation technique which is useful in relating fixed and variable costs to the number of hours of operation, the number of units produced, or other measures of operational activity. In each case, the break-even point is of primary interest in that it identifies the range of the decision variable within the most desirable economic outcome may occur. The economic success of an enterprise depends upon its ability to carry on the activities to the end that there may be a net difference between receipts and the cost of production. (Blanchard & Farbrycky, 1990)

The linear break-even analysis is useful in evaluating the effect on profit of proposals for new operations not yet implemented and for which no data exist. The total cost including fixed and variable consists of use of facilities, material, and people. (Blanchard & Farbrycky, 1990)

The Figure 32 below shows the profitability evaluation of our project. From the graph, the break-even is in the beginning of the year 2011.

Table 17: Break Even Analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>No of customer</th>
<th>Fixed Cost ($ K)</th>
<th>Variable Cost ($ K)</th>
<th>Total Cost($ K)</th>
<th>Total Income($ K)</th>
<th>Profit ($ K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>100</td>
<td>355</td>
<td>455</td>
<td>0.0</td>
<td>-455.0</td>
</tr>
<tr>
<td>2011</td>
<td>3</td>
<td>100</td>
<td>355</td>
<td>455</td>
<td>300.0</td>
<td>-155.0</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>100</td>
<td>365</td>
<td>465</td>
<td>610.4</td>
<td>145.4</td>
</tr>
<tr>
<td>2013</td>
<td>5</td>
<td>100</td>
<td>490</td>
<td>590</td>
<td>1314.0</td>
<td>724.0</td>
</tr>
<tr>
<td>2014</td>
<td>7</td>
<td>100</td>
<td>525</td>
<td>625</td>
<td>1577.0</td>
<td>952.0</td>
</tr>
</tbody>
</table>
Figure 31: Break Even Analysis

Figure 32: Profit and Loss Chart
10.0 Return on Investment (ROI)

Return on investment is a performance measure used to evaluate the efficiency of an investment or to compare the efficiency of a number of different investments. To calculate ROI, the benefit (return) of an investment is divided by the cost of the investment; the result is expressed as a percentage or a ratio.

The return on investment formula:

\[
\text{ROI} = \frac{\text{Total Revenue} - \text{Cost of Investment}}{\text{Cost of Investment}}
\]

Table 18 shows the simple annualized ROI calculated based on above formula.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Cost ($ K)</th>
<th>Total Revenue ($ K)</th>
<th>ROI (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>455</td>
<td>0.0</td>
<td>-100</td>
</tr>
<tr>
<td>2011</td>
<td>455</td>
<td>300.0</td>
<td>-34</td>
</tr>
<tr>
<td>2012</td>
<td>465</td>
<td>610.4</td>
<td>31</td>
</tr>
<tr>
<td>2013</td>
<td>590</td>
<td>1314.0</td>
<td>122</td>
</tr>
<tr>
<td>2014</td>
<td>625</td>
<td>1577.0</td>
<td>152</td>
</tr>
</tbody>
</table>
Considering five year ROI,

\[
\text{ROI} = \frac{(0 + 300 + 610 + 1314 + 1577) - (455 + 455 + 465 + 590 + 625)}{(455 + 455 + 465 + 590 + 625)} = 46.77\%
\]
11.0 Synthesis and Simulation Results

Simulation results are shown in Appendix A and synthesis results are shown in Appendix B.

12.0 Future Work

In coming years SD technology will be the de-facto industry standard for mobile phones, digital cameras and other portable multimedia entertainment devices. MS Inc. Future plan is to work on next generation SD which is SDXC (eXtended Capacity) memory card specification. In this technology the storage capacity of the SD card will be from 32 GB to 2 TB. The speed of the bus interface according to the specification will be in the range of 104 Mbytes to 300 Mbytes per second.

MS Inc. will also look into designing 64-bit SD host controller to communicate with 64 bit processors.

13.0 Conclusion

The battery operated device which is one of the fastest growing electronic industries, leakage power is becoming a major issue. With the proposed design of secure digital host controller intellectual property, we can achieve low power design without compromising the performance. By using clock gating and voltage scaling low power techniques, the design area reduced by 10% and the total power reduced by 44%. Results for the area and power consumption were verified by Synopsys and Cadence tools. MS Inc. will hit the breakeven in the beginning of the year 2011 and then will start making profit. Also, return on investment for the five year period is about 46%. Our product will be in the market on time to get the maximum expected profit. The overall analysis indicates sure success of the product.
References

Appendix A

Test Bench

The verification environment is designed to functionally verify SD host controller. The following block diagram shows different components of the test bench.

AHB Master Model is used to initialize SD controller register and setup SD command for DATA Transfer.

AHB Slave Model responds to the requests of SD controller’s AHB master. The slave model has a memory which is initialized with ADMA descriptors and data to be transmitted. It also stores the received data from the SD controller.
The bus monitors are used to check for protocol violations and to display information about the traffic.

Example:
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER :********** Display Time :-> 168690
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Interrupt has been asserted by the HC

Score Board is used for data integrity check after data transmission. The expected data and the actual data are fed to the scoreboard for comparison. The test fails if there is data mis-compare or if transmitted data is not equal to the requested transfer.

Example:
Note - AHB MASTER : End of file reached in master.cmd
NO ERR DISPLAYED FROM AHB MODEL
NO ERR DISPLAYED FROM DEVICE MODEL
TEST PASSED

Test Plan

Test name: Full_mem_mem_sd4_normal
This test checks whether the SD controller can perform DMA-4bit block continuous write and read transfers.

Test name: Full_mem_mem_sd4_blk_cnt_min_mid_max
This test initiates DMA 4-bit block mode write and read transfers with minimum, medium and maximum block count.

Test name: sd_non_dma_byte_mode_test
This test initiates non dma mode read write transactions to the sd device. This test covers 1bit byte mode, 1bit to 4-bit byte mode write/read transfer

Test name: sd_non_dma_block_mode_test
This test initiates non dma mode read write transactions to the sd device. This test covers 1bit block mode, 1bit to 4-bit block mode write/read transfer.

Test name: sd_adma2_sd4_block_max_size
This test checks whether the sd controller can perform continuous write and read to sd card in ADMA2 4-bit mode.

Test name: sd_interrupt_test:

This test checks if sd controller can detect interrupt coming from the sd card.

Simulation Results

DMA Bulk Transfer:

Simulation Log file shows various commands transmitted to read/write blocks of data:

Note - AHB MASTER : Command 0 initiated
Note - AHB MASTER : ************* Display Time :--> 156790
NOTE - SD DEVICE : CMD0 IS RECEIVED
Note - SD DEVICE : ************* Display Time :--> 159020
Note - AHB MASTER : ************* Display Time :--> 159750
NOTE - SD-DEVICE : CMD8 IS RECEIVED
Note - AHB MASTER : ************* Display Time :--> 162100
Note - SD DEVICE : ************* Display Time :--> 163190
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER : ************* Display Time :--> 163310
NOTE - SD DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE : ************* Display Time :--> 165540
NOTE - SD DEVICE : R1, RESPONSE WITH CARD IS IN IDLE STATE
O-DEVICE : R1, RESPONSE WITH CARD IS WAITING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - AHB MASTER : ************** Display Time :--> 167820
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER : ************** Display Time :--> 168770
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER : ************** Display Time :--> 174230
Note - SD DEVICE : ************** Display Time :--> 176460
NOTE - SD-DEVICE : CMD55 IS RECEIVED
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER : ************** Display Time :--> 179690
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS NOT BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - SD DEVICE : ************** Display Time :--> 187380
NOTE - SD-DEVICE : R2, RESPONSE FOR CMD2 HAS SENT
Note - SD DEVICE : ************** Display Time :--> 193180
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Command 7 initiated
Note - AHB MASTER : ************** Display Time :--> 199630
201820SD-DEVICE : CARD IS SELECTED
NOTE - SD-DEVICE : CMD7 IS RECEIVED FOR SELECTION OF CARD
Note - SD DEVICE : ************** Display Time :--> 201820
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD7 HAS SENT
Note - SD DEVICE : ************** Display Time :--> 204100
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER : ************** Display Time :--> 205530
NOTE - SD-DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE : ************** Display Time :--> 207740
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - SD DEVICE : ************** Display Time :--> 210020
Note - AHB MASTER : ************** Display Time :--> 210990
NOTE - SD-DEVICE : ACMD6 IS RECEIVED
Note - SD DEVICE : ************** Display Time :--> 213220
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR ACMD6 HAS SENT
Note - SD DEVICE : ************** Display Time :--> 215500
Note - AHB MASTER : ************** Display Time :--> 216490
OTE - SD-DEVICE : CMD16 IS RECEIVED -------------------------->(BLOCK LENGTH) 00000100
Note - SD DEVICE : ************** Display Time :--> 218700
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD16 HAS SENT
Note - SD DEVICE : ************** Display Time :--> 220980
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : ADMA System Address register has been written
Note - AHB MASTER : ************** Display Time :--> 221910
Note - AHB MASTER : Command 25 initiated
Note - AHB MASTER : ************** Display Time :--> 222010
NOTE - AHB ARBITER: AHB BUS IS GRANTED TO THE CORE MASTER
Note - AHB:************ Display Time :--> 222090
222170 iface addr wr value == 04000021
DATA LENGTH IS LOADED IN DESCRIPTR TABLE IN SLOT
ADDRESS IS LOADED IN DESCRIPTR TABLE IN SLOT
TE - SD-DEVICE : CMD25 IS RECEIVED---------->(WRITE ADDRESS FOR MULTI-BLOCK) 00000000
Note - SD DEVICE : **************** Display Time :--> 224220
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN RECEIVE-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD25 HAS SENT
Note - AHB MASTER : **************** Display Time :--> 227350
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
NOTE - SD-DEVICE : BLOCK NO IS ---> 1
NOTE - SD-DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 250020
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 250300
Note - SD DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 294100
NOTE - SD-DEVICE : BLOCK NO IS ---> 2
NOTE - SD-DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 272060
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 272340
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
274870 iface addr wr value == 02000023
DATA LENGTH IS LOADED IN DESCRIPTR TABLE IN SLOT
ADDRESS IS LOADED IN DESCRIPTR TABLE IN SLOT
NOTE - SD-DEVICE : BLOCK NO IS ---> 3
NOTE - SD-DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 294100
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 294380
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
NOTE - SD-DEVICE : BLOCK NO IS ---> 4
NOTE - SD-DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 316140
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 316420
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
318950 iface addr wr value == 02000023
DATA LENGTH IS LOADED IN DESCRIPTR TABLE IN SLOT
ADDRESS IS LOADED IN DESCRIPTR TABLE IN SLOT
NOTE - SD-DEVICE : BLOCK NO IS ---> 5
NOTE - SD-DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 338180
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 338460
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 849740
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY -->No OF BYTE ARE 256
Note - SD DEVICE : **************** Display Time :--> 871140
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
Note - SD DEVICE : **************** Display Time :--> 872300
NOTE - SD-DEVICE : CMD12 IS RECEIVED
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN SEND-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD12 HAS SENT
Note - SD DEVICE : **************** Display Time :--> 874580
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER : **************** Display Time :--> 874990
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Transfer complete bit set in Normal Interrupt Status Register
Non DMA Transfer:

Note - SD DEVICE :************ Display Time :--> 156660
Note - AHB MASTER : Clock Control register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 156670
Note - AHB MASTER : Command 0 initiated
Note - AHB MASTER :************ Display Time :--> 156790
NOTE - SD-DEVICE : CMD0 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 159020
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 159270
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 159470
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 159750
Note - AHB MASTER :************ Display Time :--> 159870
NOTE - SD-DEVICE : CMD8 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 162100
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 162350
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 162550
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 162830
Note - AHB MASTER : Host Controller Capabilities register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 162950
Note - AHB MASTER : Power Control register has been written
Note - AHB MASTER :************ Display Time :--> 163010
Note - AHB MASTER : Power Control register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 163130
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER :************ Display Time :--> 163250
NOTE - SD-DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 163540
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN IDLE STATE
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - SD DEVICE :************ Display Time :--> 166740
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 168110
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 168310
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 168590
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER :************ Display Time :--> 168690
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 173550
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 173750
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 174030
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER :************ Display Time :--> 174150
NOTE - SD-DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 176380
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN IDLE STATE
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - SD DEVICE :************ Display Time :--> 178660
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 179030
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 179230
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 179510
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER :************ Display Time :--> 179610
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 184470
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 184670
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 184950
Note - AHB MASTER :************ Display Time :--> 184950
CARD DOES NOT SUPPORT HIGH CAPACITY but VERSION 2.0
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER :************ Display Time :--> 185070
NOTE - SD-DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 187300
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN IDLE STATE
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - SD DEVICE :************ Display Time :--> 189580
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 189950
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 190150
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 190430
Note - AHB MASTER : Command 41 initiated
Note - AHB MASTER :************ Display Time :--> 190530
NOTE - SD-DEVICE : ACMD41 IS RECEIVED
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS NOT BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 195390
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER

Normal Interrupt Status register is read by the Model internally

Response 0 and Response 1 register is read by the Model internally

Memory card is ready

Card does not support high capacity but version 2.0

NOTE - SD-DEVICE

CMD2 is received

CMD3 is received for selection of card

R6, response with Card is in transfer state has sent

CMD7 is received for selection of card

R1, response for CMD7 has sent

Interrupt has been asserted by the HC

Slot Interrupt Status register is read by the Model internally

Command complete bit set in Normal Interrupt Status Register

Normal Interrupt Status register has been written

RCA value is 0001

Command 7 initiated

Card is selected

NOTE - SD-DEVICE

CMD7 is received for selection of card

R1, response with card is in transfer state has sent

CMD7 has sent

Interrupt has been asserted by the HC

Slot Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Response 0 and Response 1 register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register is read by the Model internally

Normal Interrupt Status register has been written

Normal Interrupt Status register has been written
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER :************ Display Time :--> 216330
Note - SD DEVICE :************ Display Time :--> 218540
Note - SD DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
Note - SD DEVICE :************ Display Time :--> 220820
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 221190
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 221390
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 221670
Note - AHB MASTER :************ Display Time :--> 221790
Note - SD DEVICE : ACMD6 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 224020
OTE - SD-DEVICE : CMD16 IS RECEIVED -------------------------->(BLOCK LENGTH) 00000008
Note - SD DEVICE :************ Display Time :--> 229620
Note - SD DEVICE : R1, RESPONSE WITH CARD IS IN TRANSFER STATE HAS SENT
Note - SD DEVICE : R1, RESPONSE FOR CMD25 HAS SENT
Note - AHB MASTER :************ Display Time :--> 231900
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 232270
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 232470
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 232750
Note - AHB MASTER : Command 25 initiated
Note - AHB MASTER :************ Display Time :--> 232870
TE - SD-DEVICE : CMD25 IS RECEIVED------------------> (WRITE ADDRESS FOR MULTIBLOCK) 00000000
Note - SD DEVICE :************ Display Time :--> 235060
Note - SD DEVICE : R1, RESPONSE WITH CARD IS IN RECEIVE-DATA STATE HAS SENT
Note - SD DEVICE : R1, RESPONSE FOR CMD25 HAS SENT
Note - AHB MASTER :************ Display Time :--> 237340
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 237710
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Buffer write Ready bit is set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 237910
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER : 8 bytes are written to the core
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE RECEIVED SUCCESSFULLY
NOTE - SD-DEVICE : BLOCK NO IS ---> 1
Note - SD DEVICE : BYTES OF DATA RECEIVED SUCCESSFULLY -->No OF BYTE ARE 8
Note - SD DEVICE :************ Display Time :--> 240020
NOTE - SD-DEVICE : CRC STATUS HAS SENT SUCCESSFULLY
Note - SD DEVICE :************ Display Time :--> 240300
NOTE - SD-DEVICE : CMD12 IS RECEIVED
TE - SD-DEVICE : CMD18 IS RECEIVED-----------------(READ ADDRESS FOR MULTI-BLOCK) 00000000
Note - SD DEVICE :************ Display Time :--> 247420
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY -->No OF BYTE ARE 8
Note - SD DEVICE :************ Display Time :--> 248900
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN SENDING-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD18 HAS SENT
Note - SD DEVICE :************ Display Time :--> 249700
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY -->No OF BYTE ARE 8
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
Note - AHB MASTER : Read 8 bytes from the core
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY -->No OF BYTE ARE 8
Note - SD DEVICE :************ Display Time :--> 251860
NOTE - SD-DEVICE : CMD12 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 25260
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN SENDING-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD12 HAS SENT
Note - AHB MASTER : Command 7 initiated
Note - AHB MASTER :************ Display Time :--> 255070
Note - SD DEVICE :************ Display Time :--> 257260
SD-DEVICE : CARD IS DESELECTED
Note - SD DEVICE :************ Display Time :--> 257260
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN STAND-BY STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD7 HAS SENT
Note - SD DEVICE :************ Display Time :--> 259540
Note - AHB MASTER : Command 55 initiated
Note - AHB MASTER :************ Display Time :--> 290430
NOTE - SD-DEVICE : CMD55 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 292660
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN IDLE STATE
O-DEVICE : R1, RESPONSE WITH CARD IS WAITTING FOR APP SPECIFIC COMMAND HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD55 HAS SENT
Note - SD DEVICE :************ Display Time :--> 294940
NOTE - SD-DEVICE : R3, RESPONSE WITH CARD POWER UP STATUS NOT BUSY HAS SENT
NOTE - SD-DEVICE : R3, RESPONSE FOR ACMD41 HAS SENT
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 300750
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Command complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 300950
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Response 0 and Response 1 register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 301230
Note - AHB MASTER : Memory card is ready
Note - SD DEVICE :************ Display Time :--> 357980
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY --> No OF BYTE ARE 5
Note - SD DEVICE :************ Display Time :--> 359220
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY --> No OF BYTE ARE 5
Note - SD DEVICE :************ Display Time :--> 359220
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN SENDING-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD18 HAS SENT
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY --> No OF BYTE ARE 5
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Read 5 bytes from the core
Note - SD DEVICE :************ Display Time :--> 5885860
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : BYTES OF DATA ARE SENT SUCCESSFULLY --> No OF BYTE ARE 5
Note - SD DEVICE :************ Display Time :--> 5887180
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : CMD12 IS RECEIVED
Note - SD DEVICE :************ Display Time :--> 5887780
NOTE - SD-DEVICE : START BIT FOR SD 4 BIT MODE SENT SUCCESSFULLY
NOTE - SD-DEVICE : R1, RESPONSE WITH CARD IS IN SENDING-DATA STATE HAS SENT
NOTE - SD-DEVICE : R1, RESPONSE FOR CMD12 HAS SENT
Note - SD DEVICE :************ Display Time :--> 5890060
SD DEVICE: END OF REACHED IN DEVICE
Note - AHB MASTER : Interrupt has been asserted by the HC
Note - AHB MASTER : Slot Interrupt Status register is read by the Model internally
Note - AHB MASTER :************ Display Time :--> 5890470
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : Transfer complete bit set in Normal Interrupt Status Register
Note - AHB MASTER : Normal Interrupt Status register has been written
Note - AHB MASTER :************ Display Time :--> 5890670
Note - AHB MASTER : Normal Interrupt Status register is read by the Model internally
Note - AHB MASTER : End of file reached in master.cmd
NO ERR DISPLAYED FROM AHB MODEL
NO ERR DISPLAYED FROM DEVICE MODEL
TEST PASSED

Appendix B Synthesis results : Area, timing, power
Appendix B

Synthesis results: Area, timing, power

Synthesis Script

```
#### Template Script for RTL->Gate-Level Flow (generated from RC v09.10-p104_1)
set_attr lp_power_unit mW /
set_attr optimize_merge_flops false /
set_attr optimize_merge_latches false /
set_attr tns_opto true /

suppress_messages LBR-150
suppress_messages LBR-147
suppress_messages LBR-23
suppress_messages LBR-1
suppress_messages LBR-3
suppress_messages LBR-40
suppress_messages LBR-72
suppress_messages SDC-202

lappend hdlFiles ../rtl/sdi_adma_ctrl.v
lappend hdlFiles ../rtl/sdi_ahb_iface.v
lappend hdlFiles ../rtl/sdi_bus_monitor.v
lappend hdlFiles ../rtl/sdi_clock_gater.v
lappend hdlFiles ../rtl/sdi_glitch_free_clk.v
lappend hdlFiles ../rtl/sdi_clk_gen.v
lappend hdlFiles ../rtl/sdi_cmd_resp.v
lappend hdlFiles ../rtl/sdi_crc16x.v
lappend hdlFiles ../rtl/sdi_crc7x.v
lappend hdlFiles ../rtl/sdi_dsync.v
lappend hdlFiles ../rtl/sdi_fifo_ctrl.v
lappend hdlFiles ../rtl/sdi_high_ctrl.v
lappend hdlFiles ../rtl/sdi_iface_params.v
lappend hdlFiles ../rtl/sdi_tx_rx_ram.v
lappend hdlFiles ../rtl/sdi_receive.v
lappend hdlFiles ../rtl/sdi_reg_ctrl.v
lappend hdlFiles ../rtl/sdi_reg_top.v
lappend hdlFiles ../rtl/sdi_sync_mod.v
lappend hdlFiles ../rtl/sdi_dft_mux.v
lappend hdlFiles ../rtl/sdi_sync_pulse.v
lappend hdlFiles ../rtl/sdi_synch_pulse.v
lappend hdlFiles ../rtl/sdi_PRB08SDGZ.v
lappend hdlFiles ../rtl/sdi_transmit.v
lappend hdlFiles ../rtl/sdi_ram.v
lappend hdlFiles ../rtl/sdi_wrapper.v
```
lappend hdlFiles ../rtl/sdi_host_top.v

#0.81V libraries
set libFilesAll
{./automount/tsmc40g/cot/arm/arm_stdlib/sc9mc/20100302_hvt_c50_1.3.0/synopsys/lib-nldm/sc9mc_cln40g_base_hvt_c50_ss_081_m40_nldm.lib ./a
automount/tsmc40g/cot/arm/arm_stdlib/sc9mc/20100302_rvt_c40_1.3.0/synopsys/lib-nldm/sc9mc_cln40g_base_rvt_c40_ss_081_m40_nldm.lib}

foreach mem $libFiles { lappend libFilesAll $mem}
set_attr library $libFilesAll /

source ./sc9mc_cln40g_base_hvt_c50_dont_use.list.tcl
foreach cell $avoidCell {
set_attr avoid true [find /-libcell $cell]
}
set lefFilesAll
{./automount/tsmc40g/cot/arm/arm_stdlib/sc9mc/20100302_hvt_c50_1.3.0/lef/tech/1p9m_6x2z/tech.
lef ./automount/tsmc40g/cot/arm/arm_stdlib/
sc9mc/20100302_hvt_c50_1.3.0/lef/sc9mc_cln40g_base_hvt_c50.lef.antenna}
set_attr lef_library $lefFilesAll /
#set_attr cap_Table_file
/projects/svdc/mamba/users/${USER}/trunk/backend/lbr_database/cln45gs_1p09m+alrdl_6x2z_cworst.
capTable
set_attr cap_Table_file ${MB_ROOT}/mb_mem_db/cln45gs_1p09m+alrdl_6x2z_cworst.capTable

set_attr avoid true /libraries/sc9mc_cln40g_base_rvt_c40_ss_081_m40_nldm/libcells/*

Power root attributes

#set_attribute lp_insert_clock_gating true /
#set_attribute hdl_track_filename_row_col true /

##
Load Design
##

read_hdl -v2001 $hdlFiles
elaborate $DESIGN
puts "Runtime & Memory after 'read_hdl'"
timestat Elaboration
check_design -unresolved

##
Constraints Setup

Write your constraints here.
dc::create_clock clk_ahb -period 6 -waveform {0 3}
dc::set_clock_uncertainty 0.4 [dc::get_clocks clk_ahb]
dc::set_dont_touch_network [dc::get_clocks clk_ahb]
dc::create_clock clk_xin -period 20.83 -waveform {0 10.425}
dc::set_clock_uncertainty 0.4 [dc::get_clocks clk_xin]
dc::set_dont_touch_network [dc::get_clocks clk_xin]
dc::create_clock -name clk_sleep_in -period 31250 -waveform {0 15625} [dc::get_ports clk_sleep_in]
dc::set_clock_uncertainty 0.4 [dc::get_clocks clk_sleep_in]
dc::set_dont_touch_network [dc::get_clocks clk_sleep_in]
dc::create_clock -name clk_sd -period 20.83 -waveform {0 10.425} [dc::get_pins u_clk_gen1/clk_sd]
dc::set_clock_uncertainty 0.4 [dc::get_clocks clk_sd]
dc::set_dont_touch_network [dc::get_clocks clk_sd]
dc::create_clock -name clk_sdcard_s1_in -period 20.83 -waveform {0 10.425} [dc::get_ports clk_sdcard_s1_in]
dc::create_clock -name clk_sdcard_s2_in -period 20.83 -waveform {0 10.425} [dc::get_ports clk_sdcard_s2_in]
dc::set_clock_uncertainty 0.4 [dc::get_clocks clk_sdcard_s2_in]
dc::set_dont_touch_network [dc::get_clocks clk_sdcard_s2_in]
dc::set_dont_touch_network [dc::get_ports rstahb_n]
dc::set_dont_touch_network [dc::get_pins u_reg_top1/rstahb_n]

set ahb_inputs []
set ahb_outputs []
set sd_inputs []
set sd_outputs [
 -clkc xin
 -clkc ahb
 -clkc_sd
 -clkc_sdcard_s1_in
 -clkc_sdcard_s2_in
]
set sdcd_s1_n [dc::get_pins sdcd_s1_n]
set sdwp_s2 [dc::get_pins sdwp_s2 {0 3}]

set ahb_inputs [list m_hready m_hrdata m_hresp m_hgrant t_htrans t_hwdata t_haddr t_hsize t_hready_in QB]
set ahb_outputs [list m_hwdata m_hready m_haddr m_hburst m_hwdata t_hdata t_hready t_hresp int_to_arm m_hbusreq bus_volt_s1 bus_pow_s1 bus_vo]
set sd_inputs [list sdcd_s1_n sdwp_s1 sdcd_s2_n sdwp_s2 cmd_in data0_in data1_in_s1 data2_in data3_in data1_in_s2 data1_out_s2]
set sd_outputs [list cmd_out data1_out_s1 data2_out data3_out cmd_out_en data0_out_en data1_out_en_s1 data2_out_en data3_out_en data1_out_s2]

dc::set_input_delay 14 -clock clk_sd [dc::get_ports $sd_inputs]
dc::set_output_delay 6 -clock clk_sd [dc::get_ports $sd_outputs]
dc::set_dont_touch_network [dc::get_clocks clk_ahb]

Latch Borrow to 0

67
set_attr latch_borrow 0 /des/*

if {{llength [find / -subdesign *sms_wrapper]] > 0} {
set_attr preserve map_size_ok [find / -subdesign *sms_wrapper]
}

if {!{[file exists ${_LOG_PATH}]} {
file mkdir ${_LOG_PATH}
puts "Creating directory ${_LOG_PATH}"
}

if {!{[file exists ${_OUTPUTS_PATH}]} {
file mkdir ${_OUTPUTS_PATH}
puts "Creating directory ${_OUTPUTS_PATH}"
}

if {!{[file exists ${_REPORTS_PATH}]} {
file mkdir ${_REPORTS_PATH}
puts "Creating directory ${_REPORTS_PATH}"
}

###
Preserve cells/modules ...
###
if {{} != [set insts [find $DESIGN -instance *d0nt_*]]} {
 set_attr preserve true $insts
 unset insts
}

###
Define cost groups (clock-clock, clock-output, input-clock, input-output)
###
if {{llength [all::all_seqs]] > 0} {
 define_cost_group -name I2C -design $DESIGN
 define_cost_group -name C2O -design $DESIGN
 define_cost_group -name C2C -design $DESIGN
 path_group -from [all::all_seqs] -to [all::all_seqs] -group C2C -name C2C
 path_group -from [all::all_seqs] -to [all::all_outs] -group C2O -name C2O
 path_group -from [all::all_inps] -to [all::all_seqs] -group I2C -name I2C
}

define_cost_group -name I2O -design $DESIGN
path_group -from [all::all_inps] -to [all::all_outs] -group I2O -name I2O
check_design -multidriven

Synthesizing to generic

synthesize -to_generic -eff $SYN_EFF
puts "Runtime & Memory after 'synthesize -to_generic'"
timestat GENERIC

Synthesizing to gates

synthesize -to_mapped -eff $MAP_EFF -no_incr
puts "Runtime & Memory after 'synthesize -to_map -no_incr'"
timestat MAPPED

#report datapath > ${_REPORTS_PATH}/${DESIGN}_datapath_map.rpt

Incremental Synthesis

synthesize -to_mapped -eff $MAP_EFF -incr
puts "Runtime & Memory after incremental synthesis"
timestat INCREMENTAL

Incremental Synthesis

An effort of low was selected to minimize runtime of incremental opto.
If your timing is not met, rerun incremental opto with a different effort level
synthesize -to_mapped -eff low -incr
puts "Runtime & Memory after incremental synthesis"
timestat INCREMENTAL_POST_SCAN_CHAINS
write Encounter file set (verilog, SDC, config, etc.)

Synthesis Results:

Clock gating Reports:

Operating conditions: PVT_ss_081_m40
Interconnect mode: global
Area mode: physical library

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RC Clock Gating Instances</td>
<td>178</td>
<td>-</td>
</tr>
<tr>
<td>Non-RC Clock Gating Instances</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>RC Gated Flip-flops</td>
<td>2454</td>
<td>64</td>
</tr>
<tr>
<td>Non-RC Gated Flip-flops</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Ungated Flip-flops</td>
<td>1380</td>
<td>36</td>
</tr>
<tr>
<td>Total Flip-flops</td>
<td>3834</td>
<td>100</td>
</tr>
</tbody>
</table>

....

....
Appendix C

SD card commands and description are appended in this section which is taken from Sandisk Manual.

SD Card Command Classes

<table>
<thead>
<tr>
<th>Supported Commands</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD0</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD2</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD3</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD4</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD7</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD10</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD12</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD13</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD15</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD16</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD17</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD18</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD24</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD25</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD27</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD28</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD29</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD30</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD22</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD33</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD38</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD42</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD55</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD58</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM06</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM013</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM022</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM023</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM041</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM042</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM051</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Command Description

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Reap</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD0</td>
<td>lc</td>
<td>[31:0] don't care*</td>
<td>-</td>
<td>GO_IDLE_STATE</td>
<td>Resets all cards to idle state.</td>
</tr>
<tr>
<td>CMD1</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD2</td>
<td>lcr</td>
<td>[31:0] don't care*</td>
<td>R2</td>
<td>ALL_SEND_CID</td>
<td>Asks any card to send their CID numbers on the CMD line. Any card that is connected to the host will respond.</td>
</tr>
<tr>
<td>CMD3</td>
<td>lcr</td>
<td>[31:0] don't care*</td>
<td>R6</td>
<td>SEND_RELATIVE_ADDR</td>
<td>Asks the card to publish a new relative address (RCA).</td>
</tr>
<tr>
<td>CMD4</td>
<td></td>
<td>Not Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD5</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD6</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD7</td>
<td>ac</td>
<td>[31:16] RCA [15:0]</td>
<td>R1</td>
<td>SELECT/DESELECT_CARD</td>
<td>Command toggles a card between the Stand-by and Transfer states or between the Programming and Disconnect state.</td>
</tr>
<tr>
<td>CMD8</td>
<td>ac</td>
<td>[31:16] RCA [15:0]</td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>CMD11</td>
<td>ac</td>
<td>[31:0] data address*</td>
<td>R1</td>
<td>READ_DAT_UNTIL_STOP</td>
<td>Reads data stream from the card, starting at the given address, until a STOP_TRANSMISSION follows.</td>
</tr>
<tr>
<td>CMD12</td>
<td>ac</td>
<td>[31:0] don't care*</td>
<td>R1 3</td>
<td>STOP_TRANSMISSION</td>
<td>Terminates a multiple block read/write operation.</td>
</tr>
<tr>
<td>CMD14</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD15</td>
<td>ac</td>
<td>[31:16] RCA [15:0]</td>
<td></td>
<td>GO_INACTIVE_STATE</td>
<td>Sets the card to inactive state.</td>
</tr>
</tbody>
</table>

* The bit places must be filled but the value is irrelevant.
Block Read Commands

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD16</td>
<td>ac</td>
<td>[31:0] block length</td>
<td>R1</td>
<td>SET_BLOCKLEN</td>
<td>Selects a block length (in bytes) for all following block commands (read and write).³</td>
</tr>
<tr>
<td>CMD17</td>
<td>adtc</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>READ_SINGLE_BLOCK</td>
<td>Reads a block of the size selected by the SET_BLOCKLEN command.⁴</td>
</tr>
<tr>
<td>CMD18</td>
<td>adtc</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>READ_MULTIPLE_BLOCK</td>
<td>Continuously send blocks of data until interrupted by a stop transmission command.</td>
</tr>
<tr>
<td>CMD19 - CMD23</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Block Write Commands

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD24</td>
<td>adtc</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>WRITE_BLOCK</td>
<td>Writes a block of the size selected by the SET_BLOCKLEN command.⁵</td>
</tr>
<tr>
<td>CMD25</td>
<td>adtc</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>WRITE_MULTIPLE_BLOCK</td>
<td>Continuously writes blocks of data until a STOP_TRANSMISSION follows.</td>
</tr>
<tr>
<td>CMD26</td>
<td></td>
<td></td>
<td></td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>CMD27</td>
<td>adtc</td>
<td>[31:0] don't care*</td>
<td>R1</td>
<td>PROGRAM_CSD</td>
<td>Programming of the programmable bits of the CSD.</td>
</tr>
</tbody>
</table>

* The bit places must be filled but the value is irrelevant.

Write Protection Commands

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD28*</td>
<td>ac</td>
<td>[31:0] data address</td>
<td>R1b</td>
<td>SET_WRITE PROT</td>
<td>This command sets the write protection bit of the addressed group. The properties of write protection are coded in the card specific data (WP_GRP_SIZE).</td>
</tr>
<tr>
<td>CMD29*</td>
<td>ac</td>
<td>[31:0] data address</td>
<td>R1b</td>
<td>CLR_WRITE PROT</td>
<td>This command clears the write protection bit of the addressed group.</td>
</tr>
<tr>
<td>CMD30*</td>
<td>adtc</td>
<td>[31:0] write protect</td>
<td>R1</td>
<td>SEND_WRITE PROT</td>
<td>This command asks the card to send the status of the write protection kit.</td>
</tr>
<tr>
<td>CMD31</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>
Error Commands

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD32</td>
<td>ac</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>ERASE_WR_BLK_START</td>
<td>Sets the address of the first write block to be erased.</td>
</tr>
<tr>
<td>CMD33</td>
<td>ac</td>
<td>[31:0] data address</td>
<td>R1</td>
<td>ERASE_WR_BLK_END</td>
<td>Sets the address of the last write block of the continuous range to be erased.</td>
</tr>
<tr>
<td>CMD34</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>CMD37</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>CMD38</td>
<td>ac</td>
<td>[31:0] don't care*</td>
<td>R1e</td>
<td>ERASE</td>
<td>Erases all previously selected write blocks.</td>
</tr>
<tr>
<td>CMD39</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>CMD41</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

* The bit places must be filled but the value is irrelevant.

Lock Card Commands

SDA Optional Commands

<table>
<thead>
<tr>
<th>Cmd Index</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDA Optional Commands, currently supported by SanDisk SD Card.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Specific Commands

<table>
<thead>
<tr>
<th>CMD INDEX</th>
<th>Type</th>
<th>Argument</th>
<th>Resp</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD55</td>
<td>ac</td>
<td>[31:16] RCA [15:0] stuff bits</td>
<td>R1</td>
<td>APP_CMD</td>
<td>Indicates to the card that the next command is an application specific command rather than a standard command.</td>
</tr>
<tr>
<td>CMD56</td>
<td>adic</td>
<td>[31:1] stuff bits. [0]: RD/WR</td>
<td>R1</td>
<td>GEN_CMD</td>
<td>Used either to transfer a data block to the card or to get a data block from the card for general purpose / application specific commands. The size of the data block shall be set by the SET_BLOCK_LEN command.</td>
</tr>
<tr>
<td>CMD57</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>CMD69</td>
<td></td>
<td></td>
<td></td>
<td>Reserved for Manufacturer</td>
<td></td>
</tr>
<tr>
<td>CMD60-63</td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>
Application Specific Command Used/ Reserved by SD Card

<table>
<thead>
<tr>
<th>ACMD INDEX</th>
<th>Type</th>
<th>Argument</th>
<th>Resp.</th>
<th>Abbreviation</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMD6</td>
<td>ac</td>
<td>[31:2] stuff bits [1:0]=bus width</td>
<td>R1</td>
<td>SET_BUS_WIDTH</td>
<td>Defines the data bus width (00'=1bit or '10'=4 bits bus) to be used for data transfer.</td>
</tr>
<tr>
<td>ACMD13</td>
<td>adtc</td>
<td>[31:0] stuff bits</td>
<td>R1</td>
<td>SD_STATUS</td>
<td>Send the SD Card status. The status fields are given in Table 4-28.</td>
</tr>
<tr>
<td>ACMD17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>ACMD18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Reserved for SD security applications.¹</td>
</tr>
<tr>
<td>ACMD19 to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>ACMD21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACMD22</td>
<td>adtc</td>
<td>[31:0] stuff bits</td>
<td>R1</td>
<td>SEND_NUM_WR_BLOCKS</td>
<td>Send the number of the written (without errors) write blocks. Responds with 32bit+CRC data block.</td>
</tr>
<tr>
<td>ACMD23</td>
<td>ac</td>
<td>[31:33] stuff bits [22:0]=Number of Blocks</td>
<td>R1</td>
<td>SET_WR_BLK_ERASE_COUNT</td>
<td>Set the number of write blocks to be pre-erased before writing (to be used for faster Multiple Block WR command). '1'=default (one wr block).²</td>
</tr>
<tr>
<td>ACMD24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>ACMD25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Reserved for SD security applications.¹</td>
</tr>
<tr>
<td>ACMD26</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Reserved for SD security applications.¹</td>
</tr>
<tr>
<td>ACMD38</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Reserved for SD security applications.¹</td>
</tr>
<tr>
<td>ACMD39 to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>ACMD40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACMD41</td>
<td>kor</td>
<td>[31:0]OCR without busy</td>
<td>R3</td>
<td>SD_APP_OP_COND</td>
<td>Ask the accessed card to send its operating condition register (OCR) con text in the response on the CMD line.</td>
</tr>
<tr>
<td>ACMD42</td>
<td>ac</td>
<td>[31:1] stuff bits [0]=set_col</td>
<td>R1</td>
<td>SET_CLR_CARD_DETECT</td>
<td>Connect[1]=Connected[0] the 5KOhm pull-up resistor on CI/DAT3 (pin 1) of the card. The pull-up may be used for card detection.</td>
</tr>
<tr>
<td>ACMD43</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Reserved for SD security applications.¹</td>
</tr>
<tr>
<td>ACMD49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACMD51</td>
<td>adtc</td>
<td>[31:0] stuff bits</td>
<td>R1</td>
<td>SEND_SCR</td>
<td>Reads the SD Configuration Register (SCR).</td>
</tr>
</tbody>
</table>

NOTES:
1. Refer to SD Card Security Specification for detailed explanations about the SD Security Features
2. Command STOP_TRAN (CMD12) shall be used to stop the transmission in Write Multiple Block whether the pre-erase (ACMD23) feature is used or not.